Action and Reaction Forces: Law, Examples & Quiz

  • Lesson
  • Quiz
  • Like?
Taught by

Elena Cox

Action force is force acting in one direction. Reaction force is force acting in the opposite direction. Learn more about Newton's third law as it explains action and reaction forces through several examples and test your knowledge with quiz questions.

We also recommend watching Identifying Action and Reaction Force Pairs and Nuclear Reaction: Definition, Examples & Quiz


Forces always act in pairs. The two forces act in opposite directions. When you push on an object, the object pushes back with an equal force. Think of a pile of books on a table. The weight of the books exerts a downward force on the table. This is the action force. The table exerts an equal upward force on the books. This is the reaction force. Note that the two forces act on different objects. The action force acts on the table. The reaction force acts on the books.

action and reaction forces

Force Pairs

The example with the boy playing with a dog's toy illustrates the idea of forces in interaction pairs. There is a force from the boy on the dog's toy, and there is a force from the dog's toy on the boy. Forces always come in pairs similar to this example. Consider the boy (A) as one system and the toy (B) as another. What forces act on each of the two systems. Looking at the force diagrams, you can see that each system exerts a force on the other. The two forces F(A on B) and F(B on A), are the forces of interaction between the two. Notice the symmetry in the subscripts: A on B and B on A.

Interactive pair

The forces F(A on B)and F(B on A) are an interaction pair, which is a set of two forces that are in opposite directions, have equal magnitudes, and act on different objects. Sometimes, an interaction pair is called an action-reaction pair. This might suggest that one causes the other; however, this is not true. For example, the force of the boy pulling on the toy doesn't cause the toy to pull on the boy. The two forces either exist together or not at all.

There can never be a single force acting alone, without its action-reaction partner. Forces only come in action-reaction pairs. Think carefully about propelling a skateboard with your foot. Your foot presses backward against the ground. The force acts on the ground. However, you move, so a force must act on you, too. Why do you move? What force acts on you? You move because the action force of your foot against the ground creates a reaction force of the ground against your foot. You 'feel' the ground because you sense the reaction force pressing on your foot. The reaction force is what makes you move because it acts on you.


Newton's Third Law

Newton's third law of motion explains action and reaction forces. The third law states that for every action force, there is an equal and opposite reaction force. Imagine hitting a baseball. The bat exerts a force on the ball. This is the action force. The ball exerts and equal and opposite force on the bat. This is the reaction force. In the illustration with the boy and the dog's toy, the force exerted by the boy on the toy is equal in magnitude and opposite in direction to the force exerted by the toy on the boy. Such an interaction pair is another example of Newton's third law, which states that all forces come in pairs. The two forces in a pair act on different objects and are equal in strength and opposite in direction.

The force of A on B is equal in magnitude and opposite in direction of the force of B on A:

F(A on B) = - F(B on A)

Newton realized that if one object pulls on another, the second object also pulls back on the first object. If one object pushes on another, the second pushes back on the first object. In other words, for every action by a force there is a reaction by another force.

Draw Diagrams

When sorting out action and reaction forces, it is helpful to draw diagrams. Draw each object apart from the other. Represent each force as an arrow in the appropriate direction. Here are some guidelines to help you sort out action and reaction forces:

Drawing guidelines

Consider the situation of holding a book in your hand. You can draw one diagram for you and one for the book. Are there any interaction pairs? When identifying interaction pairs, keep in mind that they always occur in two different diagrams and they always will have the symmetry of subscripts noted earlier. In this case, the interaction pair is F(book)on hand and F(hand) on book.


We've gone through one example already; we said that when a bat exerts a force on the baseball, the ball also exerts an equal and opposite reaction force on the bat. What are some other examples? Let's look at the rocket engines. Newton's third law explains how rocket engines work. Hot gases are forced out of the back of the rocket. This is the action force. The gases exert an equal and opposite force on the rocket. This is the reaction force. The reaction pushes the rocket upward.

Notice what happens when the diver jumps on a diving board. The board springs back and forces the diver into the air. The action force exerted on the board by the diver causes a reaction force by the board on the diver. The force of the diver on the board is equal and opposite to the force exerted by the diving board. Think about the way the force of the diving board affects the diver's performance. The greater the force exerted upon the diving board, the higher the dive will be.

board jumper

The crew team uses Newton's third law of motion to move its boat. When an oar is put into the water, the water exerts an equal force on both sides of the oar. However, when the members pull on their oars, the surface of the flat side of the oars pushes against the water. The water pushes back on the oars with an equal and opposite force. The boat moves in the opposite direction of the oars with a force that is equal to that of the oars as they push against the water. The boat moves because the forces against it are unbalanced. Why do you think it is important for all the crew members to pull on their oars at the same time? If the crew members do not work together, their own forces will balance each other, decreasing the overall unbalanced force they are trying to achieve.

rowing boat

A rotating water sprinkler is another example of action and reaction. Water is forced from the sprinkler. This is the action. The reaction is the movement of the sprinkler arms away from the water. You feel the same kind of reaction when you hold a water hose and turn the water on quickly. You may have seen firefighters struggling to control a fire hose. The hose is forced backward when the water leaves it. This reaction makes the hose hard to handle.


Octopus and squid make use of Newton's third law of motion. An octopus or squid moves by first drawing water into its body. Then the animal forcefully squeezes water out of its body through an opening behind its head. The force of the expelled water moves the animal in the opposite direction.

Consider a situation when you blow up a balloon, hold it with the opening downward and let go. In what direction does the balloon move? With the opening downward, the balloon moves upward. Blow up the balloon again, hold it horizontally and let it go. In what direction does the balloon move? The balloon will move horizontally away from the end from which the air is escaping. How would you explain why both balloons don't move in the same direction? The direction of motion is opposite the direction of the escaping air.

Lesson Summary

Forces always act in pairs. Newton's third law of motion states that for every action force, there is an equal and opposite reaction force. Newton's third law explains how rocket engines work.

Ace Your Next Test & Improve your Grades

As a member, you'll get unlimited access to over 5,000+ video lessons in Math, English, Science, History, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed. Learn More

Start your free trial to take this quiz
As a premium member, you can take this quiz and also access over 8,500 fun and engaging lessons in math, English, science, history, and more. Get access today with a FREE trial!
Free 5-day trial
It only takes a minute to get started. You can cancel at any time.
Already registered? Login here for access.

Search Our Courses

Did you like this?
Yes No

Thanks for your feedback!

What didn't you like?

What didn't you like?

Education Portal Video Lessons

The smarter way to study Short videos, Real results
  • More affordable than tutoring
  • All major high school and college subjects
  • Unlimited access to all 8,500+ video Lessons
  • Study on your own schedule
Try it Free