Like?

Atomic and Ionic Radii: Trends Among Groups and Periods of the Periodic Table

Start Your Free Trial To Continue Watching
As a member, you'll also get unlimited access to over 8,500 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.
Free 5-day trial
It only takes a minute. You can cancel at any time.
Already registered? Login here for access.
Start your free trial to take this quiz
As a premium member, you can take this quiz and also access over 8,500 fun and engaging lessons in math, English, science, history, and more. Get access today with a FREE trial!
Free 5-day trial
It only takes a minute to get started. You can cancel at any time.
Already registered? Login here for access.
  1. 0:13 The Size of an Atom
  2. 2:14 Group Trends
  3. 3:43 Periodic Trends
  4. 5:11 Ionic Radii
  5. 5:53 Lesson Summary
Show Timeline
Taught by

Kristin Born

Kristin has an M.S. in Chemistry and has taught many at many levels, including introductory and AP Chemistry.

Atoms are VERY tiny. How do we measure their size? This lesson will explain how the size of an atom is measured and teach you how to predict the relative size of an atom based on where it is located on the periodic table.

The Size of an Atom

When you picture an atom, you probably see a bunch of protons and neutrons crammed together in a tiny little nucleus surrounded by a bunch of electrons zipping around the outside of a nucleus. It should make sense that the size of an atom is really dependent on how far away the electrons are; more specifically, how far away the outer electrons, or valence electrons, are. If they are zipping around really close to the nucleus in the first energy level, the atom will likely be very small, and if the valence electrons are flying around way out in the fifth energy level, the atom will be very large. The size of an atom is dependent on how much space the electrons take up.

The size of an atom depends on how much space its electrons take up
Atom Size

But if electrons are always moving, and we never really know exactly where an electron is at any given time, how do we measure the size of an atom? You may think of an atom as being a small, hard sphere, when in reality, its outer boundaries are very difficult to define.

Measuring an atom's size is like measuring the size of a marshmallow: It depends on how it's measured. Is it apart from the rest, or is it squished into its packaging? When the size of an atom is measured, it's important to specify if it's an isolated atom, or if it's one that is bonded to something else. Typically, the atomic radius is measured as half the distance between the nuclei of two bonded atoms. This measured radius is often slightly smaller than an atom's actual radius, but because the nucleus of an atom is very well defined and easy to detect, this measurement is the most often used.

The rest of this lesson will be focused on the trends that the atoms have in size as you move down a group or across a row on the periodic table. A trend is just a tendency to change in a predictable way. We can use these trends to compare the relative sizes of two different atoms on the table.

Group Trends

Remember that a group in the periodic table is just a vertical column, so we will only be comparing elements in the same column. As you move down a group, you will notice that the principal quantum number increases by one. This means that electrons are going to be filling energy levels farther and farther away from the nucleus. You can think of energy levels like layers in an atom. As the number of protons in an atom increases, the number of electrons will also increase. These electrons need room to move around, and each energy level can only hold so many electrons. So at the start of each row on the periodic table, a new energy level has to be 'opened' for these new electrons to be added.

As you move down a group in the periodic table, the atomic radius increases
Atomic Radius Increase

Periodic Trends

Next, we'll compare atoms across a period. Keep in mind that as you move across a row on the periodic table, electrons in atoms will be added to existing energy levels. It's only when you move down a row that new energy levels, or layers, need to be added. So if electrons are just filling existing energy levels as you move from left to right on the table, are all atoms in a period the same size? They are not, because of one key factor: As you move from left to right on the periodic table, the atomic nucleus gains more and more protons. (Well, it gains more neutrons too, but they won't matter in this situation.)

Unlock Content Over 8,500 lessons in all major subjects

Get FREE access for 5 days,
just create an account.

Start a FREE trial

No obligation, cancel anytime.

Want to learn more?

Select a subject to preview related courses:

People are saying…

"This just saved me about $2,000 and 1 year of my life." — Student

"I learned in 20 minutes what it took 3 months to learn in class." — Student

See more testimonials

Did you like this?
Yes No

Thanks for your feedback!

What didn't you like?

What didn't you like?

Next Video
Create your Account

Sign up now for your account. Get unlimited access to 8,500 lessons in math, English, science, history, and more.

Meet Our Instructors

Meet all 53 of our instructors

Copyright