Like?

Exponential Growth vs. Decay

Start Your Free Trial To Continue Watching
As a member, you'll also get unlimited access to over 8,500 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.
Free 5-day trial
It only takes a minute. You can cancel at any time.
Already registered? Login here for access.
Start your free trial to take this quiz
As a premium member, you can take this quiz and also access over 8,500 fun and engaging lessons in math, English, science, history, and more. Get access today with a FREE trial!
Free 5-day trial
It only takes a minute to get started. You can cancel at any time.
Already registered? Login here for access.
  1. 0:13 Exponential Growth
  2. 1:13 Exponential Decay
  3. 4:05 Growth vs. Decay
  4. 5:39 Determining a Starting Value
  5. 8:02 Lesson Summary
Show Timeline
Taught by

Eric Garneau

How is it that it only takes four years for our computer to go from top-of-the-line to almost worthless? Well, it has something to do with what's called exponential decay, which we'll learn about here!

Exponential Growth

Example of an exponential function
Exponential Function

We know that an exponential function is any pattern of numbers that is continuously multiplied by something - for example 3, 6 (3x2), 12 (3x4), 24 (3x8). This is an exponential function because I start with a number 3 and continuously multiply by 2. We can represent this with an equation by saying that y=3x2^x, because the pattern starts at 3 and then is multiplied by 2 each step of the way. If you substitute in x values starting at 0 and remembering that 0 exponents equal 1, you'll find that we get this exact same pattern. This example is what is called exponential growth because the numbers are growing exponentially, but there is another type of exponential function whose entries get smaller instead of getting bigger, exponential decay.

Exponential Decay

Exponential decay still follows the same rule of repeated multiplication, only the number we multiply by has to be smaller than one. What this ends up looking like is something that appears to be repeated division. Let's take a look at an example that most of us can relate to, our computer becoming worthless way faster than we had expected.

Function and graph illustrating exponential decay
Exponential Decay

Say you buy a pretty nice new computer for $1,600, but after you've owned it for a year, it's already worth only 1/2 as much as it used to be. That makes it worth $800 after 1 year, and if this pattern continues it would be worth $400 after 2 years, $200 after 3, and only $100 after a short 4 years. The price of your computer is 'decaying' (or getting smaller) each year by a factor of 1/2. It kind of looks like division by 2, but remember that division by 2 is the same as multiplication by 1/2. That means that because your pattern begins at 1,600 and becomes repeatedly multiplied by 1/2, the exponential decay equation for this example would be y=1,600x1/2^x.

These exponential functions get really small, really fast. If we assume this pattern continues, your computer would only be worth $1.50 after ten years! But it's important to note that no matter how long you keep your computer, it will never be worth $0. It might seem like it, and it might be worth pretty close to zero, but multiplying by 1/2 over and over can only make a number that's really really small. Maybe you'll end up with 0.0000000000000000001, but it will always have that little 1 on the end. If I divide this by 2, which is smaller, now it's 0.00000000000000000005. There's still a number down there; no matter how many times I divide by two, it's still going to be a tiny bit bigger than zero. This means that on our graph our line is going to get closer and closer and closer to the x-axis but it'll never quite get there. This is a math concept that comes up pretty often and is called an asymptote. In this case we have an asymptote at y=0 because that is the line (which is basically the x-axis) that our graph will get infinitely close to but never quite touch.

Growth vs. Decay

Growth vs. decay graphs
Growth Vs Decay Graphs

Now that we're familiar with both exponential growth and decay, it's important to take a look at their graphs and notice a very hopefully obvious similarity. Here I have y=2^x, which is growth because I multiply repeatedly by 2, which makes numbers bigger, and here I have y=1/2^x, which is decay because I have 1/2 being repeatedly multiplied, which makes things smaller. Looking at their graphs, you notice that they're almost the same except they've been flip-flopped or reflected around the y-axis. That means that the right-hand side of my decay graph is exactly the same as the left-hand side of my growth graph. This is true because I can plug negative values in for x in my growth graph, and when I plug in for example -1 negative exponents give me fractions, which means I have to take 1 and put it over 2^1, and that gives me 1/2, which is exactly what I do if I do 1/2^1 over here in my decay function. So the point at +1 in the decay graph is exactly the same as the point at -1 in the growth graph. That means that they both have an asymptote at y=0, it's just that the growth graph gets infinitely close to zero as you go into the negatives, and the decay graph gets infinitely close to zero as you go into the positives.

Unlock Content Over 8,500 lessons in all major subjects

Get FREE access for 5 days,
just create an account.

Start a FREE trial

No obligation, cancel anytime.

Want to learn more?

Select a subject to preview related courses:

People are saying…

"This just saved me about $2,000 and 1 year of my life." — Student

"I learned in 20 minutes what it took 3 months to learn in class." — Student

See more testimonials

Did you like this?
Yes No

Thanks for your feedback!

What didn't you like?

What didn't you like?

Next Video
Create your Account

Sign up now for your account. Get unlimited access to 8,500 lessons in math, English, science, history, and more.

Meet Our Instructors

Meet all 53 of our instructors