Like?

Gas Exchange in the Human Respiratory System

Start Your Free Trial To Continue Watching
As a member, you'll also get unlimited access to over 8,500 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.
Free 5-day trial
It only takes a minute. You can cancel at any time.
Already registered? Login here for access.
Start your free trial to take this quiz
As a premium member, you can take this quiz and also access over 8,500 fun and engaging lessons in math, English, science, history, and more. Get access today with a FREE trial!
Free 5-day trial
It only takes a minute to get started. You can cancel at any time.
Already registered? Login here for access.
  1. 0:37 Parts of Respiratory System
  2. 1:22 The Alveoli
  3. 2:32 Oxygenating Blood
  4. 4:15 Liquid in Alveoli
  5. 5:04 Lesson Summary
Show Timeline
Taught by

Jeff Calareso

Jeff has taught high school English, math and other subjects. He has a master's degree in writing and literature.

Did you know that the average human lung has a respiratory surface area that is roughly the same size as half of a tennis court? Believe it or not, that's how much surface area an active, healthy human needs to ensure that the body gets plenty of oxygen.

Why Doesn't the Skin Absorb Oxygen?

Let's talk about the human respiratory system and why we need it. I mean, we're all surrounded by the air, which is about 20% oxygen, so why don't we just absorb it through our skin? The problem is, if we just absorbed oxygen through our skin, it might reach the first two, maybe three layers of cells, before it was all used up, and it would never make it all the way to our brain, or muscles, or most other places in our body. We just don't have enough surface area to supply enough oxygen and we need an efficient way to get it into the bloodstream so that it can be distributed throughout the body.

The trachea splits into the bronchi
Gas Trachea 2

Parts of the Respiratory System

So, let's start at the beginning. A person breathes air in through their nostrils or their mouth. The mouth and nasal airways come together at a junction called the pharynx, which is located at the back of the mouth, and continues down the throat until it reaches the larynx. The larynx is more commonly known as the voice box, and some people call it the Adam's apple.

The air then enters the trachea, which is the main airway that runs from the larynx down to the lungs. The trachea is known to most people as the windpipe. Just as the air reaches the lungs, the trachea splits into two smaller tubes called bronchi.

Each bronchus enters one side of the lungs and then splits repeatedly into ever smaller tubes called bronchioles.

The Alveoli

And finally, at the ends of the smallest bronchioles are clusters of spherical structures that look a lot like bunches of grapes. These grape-like structures are called alveoli and are basically tiny air sacs with very thin walls that serve as the main site of gas exchange.

Alveoli clusters create a honeycomb-like structure
Gas 5

The average human lung has about 500 million alveoli with a combined inner surface area that is about the same size as half of a full-size tennis court. That's 40 times the surface area of a person's skin!

So how is this even possible? The organization of the alveoli in clusters creates a honeycomb-like internal structure where the alveoli walls create a massive amount of surface area for the air to come in contact with.

In combination with the sheer numbers of the alveoli, they solve our first problem by increasing the surface area available to absorb oxygen through.

But how do the lungs take oxygen out of the air and get it into the bloodstream? Well, surrounding the alveoli is a very dense network of capillaries. You may remember that capillaries are very small, flattened blood vessels with very thin walls that allow gases and nutrients to be easily transferred between the blood and surrounding tissues.

How Blood Becomes Oxygenated

The blood collects oxygen from the alveoli as it passes over the entire surface area, created by the alveolar walls. However, the oxygen can't just magically jump from the air across the alveoli and into the blood; it has to cross each barrier one at a time.

First, the oxygen has to be dissolved, so there is a thin film of water coating the inside surface of the alveoli. Because the volume of water is so small, it becomes saturated with oxygen almost instantly and the oxygen is then free to diffuse across the cell membrane. You may recall that dissolved molecules diffuse quickly in the direction of a lower concentration, which in this case is the oxygen-depleted blood in the surrounding capillaries, so oxygen diffuses from the saturated water coating the alveoli, across the alveolar wall, through the capillary wall and into the oxygen-depleted blood.

Once in the blood, you may also remember that oxygen enters red blood cells and then binds to hemoglobin, taking it out of solution and keeping the dissolved oxygen level low in the blood. This ensures that the oxygen continues to flow from the alveoli and into the blood.

Unlock Content Over 8,500 lessons in all major subjects

Get FREE access for 5 days,
just create an account.

Start a FREE trial

No obligation, cancel anytime.

Want to learn more?

Select a subject to preview related courses:

People are saying…

"This just saved me about $2,000 and 1 year of my life." — Student

"I learned in 20 minutes what it took 3 months to learn in class." — Student

See more testimonials

Did you like this?
Yes No

Thanks for your feedback!

What didn't you like?

What didn't you like?

Next Video
Create your Account

Sign up now for your account. Get unlimited access to 8,500 lessons in math, English, science, history, and more.

Meet Our Instructors

Meet all 53 of our instructors

Copyright