Like?

Graphing Absolute Value Equations: Dilations and Reflections

Start Your Free Trial To Continue Watching
As a member, you'll also get unlimited access to over 8,500 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.
Free 5-day trial
It only takes a minute. You can cancel at any time.
Already registered? Login here for access.
Start your free trial to take this quiz
As a premium member, you can take this quiz and also access over 8,500 fun and engaging lessons in math, English, science, history, and more. Get access today with a FREE trial!
Free 5-day trial
It only takes a minute to get started. You can cancel at any time.
Already registered? Login here for access.
  1. 1:09 Dilations
  2. 2:20 Reflections
  3. 4:04 Absolute Value Equations
  4. 5:23 Summary
Show Timeline
Taught by

Erin Monagan

Erin has been writing and editing for several years and has a degree in fiction writing.

Although a basic absolute value graph isn't complicated, transformations can make them sufficiently confusing! In this lesson, you'll practice different transformations of absolute value graphs.

We'll start this lesson by recalling that absolute value graphs look like the absolute coolest guitar there is, the Flying V. Also, we can slide these graphs all around by doing the transformation that is called a translation.

The graph of y=(1/3)|x| has a wide dilation
Dilation Graph

For example, by taking our parent graph y=|x| and changing it to y=|x-2|+3, the V gets translated two to the right and up three so that we end up with our vertex at the coordinates (2, 3). Also, remember that the left and right shift does the opposite of what you would expect. So, a -2 on the inside the absolute value actually shifts it to the right because I need to put in a +2 for x to turn the absolute value part into 0, which is where my vertex is going to be.

Absolute Value Graphs with Dilations

This is not the only kind of transformation that we often see with absolute value graphs. The second most common one is called a dilation (or a stretch or a shrink). In absolute value graphs, a dilation makes the V either wider or thinner. We accomplish this by putting a value in front of the absolute value (for example, y=2|x| or y=1/3|x|). Just like the m in y=mx+b, this value tells us the new slope of the lines in our V. Meaning that y=2|x| will start at the origin (because there is nothing being added or subtracted on the inside or the outside), but then go up two and over one each step of the way. This means it's going to be a steeper V than the normal one. If we did y=(1/3)|x|, we'd only go up one and over three each step of the way (and in both directions). That means this V is going to be wider than all the other ones we've looked at.

Absolute Value Graphs with Reflections

So, then the question becomes - what happens when we put a negative number in front of the absolute value (say, y=-4|x|)? Well, since the -4 is directly in front of the absolute value, which means multiplication. And, because the absolute value will always be positive no matter what we substitute in for x, (we don't multiply the positive by a negative, because it gives us a negative number) all our y values are going to be negative. So, now instead of our entire graph being above the x-axis, it will be completely below it. We call this kind of transformation a reflection because the graph of y=|x| gets reflected (like a mirror) over the x-axis to end up with y=-|x|.

Example of the reflection transformation using y=-(5/2)|x|
Reflection Graph

Quickly coming backing to the example mentioned a second ago, graphing y=-4|x| is as simple as starting at the origin (because there's no numbers being added or subtracted on the inside or the outside), going down four and then over one in each direction to find how steep or thin the graph is. Again, whether it's positive or negative, the number in front just acts as the slope - so down four over one when it's negative. We could also do y=-(5/2)|x|. We start at the origin again and go down five and over two in both directions to figure out how thin or wide our graph is.

Unlock Content Over 8,500 lessons in all major subjects

Get FREE access for 5 days,
just create an account.

Start a FREE trial

No obligation, cancel anytime.

Want to learn more?

Select a subject to preview related courses:

People are saying…

"This just saved me about $2,000 and 1 year of my life." — Student

"I learned in 20 minutes what it took 3 months to learn in class." — Student

See more testimonials

Did you like this?
Yes No

Thanks for your feedback!

What didn't you like?

What didn't you like?

Congratulations! You've reached the last video in the chapter.
Start the Next Chapter
Create your Account

Sign up now for your account. Get unlimited access to 8,500 lessons in math, English, science, history, and more.

Meet Our Instructors

Meet all 53 of our instructors