Copyright
Like?

Half-life: Calculating Radioactive Decay and Interpreting Decay Graphs

Start Your Free Trial To Continue Watching
As a member, you'll also get unlimited access to over 8,500 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.
Free 5-day trial
It only takes a minute. You can cancel at any time.
Already registered? Login here for access.
Start your free trial to take this quiz
As a premium member, you can take this quiz and also access over 8,500 fun and engaging lessons in math, English, science, history, and more. Get access today with a FREE trial!
Free 5-day trial
It only takes a minute to get started. You can cancel at any time.
Already registered? Login here for access.
  1. 0:05 Introduction
  2. 1:11 Half-Life
  3. 1:37 Half-Life Example
  4. 3:32 Simulating Half-Life
  5. 5:17 Scaling Up
  6. 6:05 Lesson Summary
Show Timeline
Taught by

Kristin Born

Kristin has an M.S. in Chemistry and has taught many at many levels, including introductory and AP Chemistry.

What causes a radioactive particle to decay? We'll never really know, but our best guess lies in probability. In this lesson, we are going to focus on the half-life, a way of measuring the probability that a particle will react.

Introduction

Imagine you're getting settled in to watch the new action film at your local theater. You have a big tub of popcorn on your lap, and you're sitting back and watching as the previews begin. About 15 minutes later, the previews finish up and you notice half of your popcorn is gone! It must have been good. The movie starts and you slow down your eating a little, but 15 minutes after the movie has started, you have eaten half of what you had left and are down to a quarter of your popcorn. This continues for the rest of the movie until all of your popcorn is gone.

If we were to graph your popcorn eating during the movie, it may look something like this. You may notice a few things about this graph. First, your popcorn eating did not happen at a steady pace. If that were the case, it would look more like a straight line. What it shows is that you ate faster at the beginning than at the end, because more popcorn is consumed in the first 15 minutes than in the second 15 minutes. The second thing you may notice is that every 15 minutes you eat half of what you had.

Half-Life

Decay of an atom can be predicted by using its half-life.
Half-Life Example

This phenomenon takes place every day in many chemical reactions and nuclear reactions, and it is called the half-life, which is the amount of time it takes for half of a sample to react. Your popcorn had a half-life of 15 minutes, meaning that every 15 minutes, half of it will get eaten. Just like your popcorn, radioactive particles have half-lives.

A Half-Life Example

Let's take an example. Say we have a bunch of cobalt-60 atoms. Cobalt-60 decays down to nickel-60 during beta decay. But how do we know when the cobalt-60 atoms are going to decay? Are they all going to decay at once or randomly? Initially it may seem like atoms decay randomly, but their probability of decaying can be predicted using an atom's half-life.

It turns out that the half-life of cobalt-60 is about 5.27 years. That means if I start out with 16 cobalt-60 atoms, and I wait 5.27 years, I will probably be left with eight cobalt-60 atoms and eight nickel-60 atoms. Then, if I wait 5.27 more years, half of the eight cobalt-60 atoms that were left should decay, giving me only four cobalt-60 atoms and a total of 12 nickel-60 atoms. If I wait 5.27 years after that, half of the cobalt that remained will decay into nickel-60, giving me 14 atoms of nickel-60 and only two atoms of cobalt-60. If I wait another 5.27 years, half of those two remaining atoms, so one atom, should decay, giving me a total of 15 nickel-60 atoms and one lonely little cobalt-60 atom. Now we can never have half of an atom, so what happens next? This is where probability makes more of a presence. If I wait 5.27 more years, there is a 50% chance that the one remaining cobalt-60 atom will decay. It either will, or it won't. If it does, then all the atoms will have decayed. If it doesn't, then it has a 50% chance of decaying in the next 5.27 years.

What graphing a half-life usually looks like
Half-Life Graph

Unlock Content Over 8,500 lessons in all major subjects

Get FREE access for 5 days,
just create an account.

Start a FREE trial

No obligation, cancel anytime.

Want to learn more?

Select a subject to preview related courses:

People are saying…

"This just saved me about $2,000 and 1 year of my life." — Student

"I learned in 20 minutes what it took 3 months to learn in class." — Student

See more testimonials

Did you like this?
Yes No

Thanks for your feedback!

What didn't you like?

What didn't you like?

Next Video
Create your Account

Sign up now for your account. Get unlimited access to 8,500 lessons in math, English, science, history, and more.

Meet Our Instructors

Meet all 53 of our instructors