How DNA Polymerase and RNA Primase Initiate DNA Replication

Start Your Free Trial To Continue Watching
As a member, you'll also get unlimited access to over 8,500 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.
Free 5-day trial
It only takes a minute. You can cancel at any time.
Already registered? Login here for access.
Start your free trial to take this quiz
As a premium member, you can take this quiz and also access over 8,500 fun and engaging lessons in math, English, science, history, and more. Get access today with a FREE trial!
Free 5-day trial
It only takes a minute to get started. You can cancel at any time.
Already registered? Login here for access.
  1. 0:05 DNA Replication and the Zipper Model
  2. 1:28 DNA Polymerase
  3. 3:18 RNA Primase and the RNA Primer
  4. 5:38 Enzyme Review
  5. 6:55 Lesson Summary
Show Timeline
Taught by

April Koch

April teaches high school science and holds a master's degree in education.

How do enzymes assist in starting DNA replication? In this lesson, we explore the work of a contributing enzyme, DNA polymerase, and learn how the RNA primer is made by the action of RNA primase.

DNA Replication and the Zipper Model

DNA helicase acts like a zipper to separate the DNA double helix
Zipper Model

So far we've been talking about DNA replication by using a zipper as an example. It really is one of the closest things we have to help us understand how DNA replication works. We talked about how the DNA molecule splits apart during semi-conservative replication and how the enzyme helicase acts just like a zipper slider to separate the DNA right down the middle. Helicase breaks the hydrogen bonds just like the wedge in the slider breaks apart the teeth on a zipper.

But we didn't get to talk about how the daughter strands are put together on top of the parent template. So in this lesson we're going to continue with the steps of DNA replication and we'll keep thinking of it being similar to the form of a zipper.

Imagine if your best friend gave you one side of a zipper tape and they asked you to complete the zipper by attaching the other side. But instead of giving you an entire zipper tape, what if they only gave you a bunch of little teeth that weren't connected to each other? You would have a lot of work to do! You'd have to slide those little metal teeth in between the grooves on the zipper tape one at a time until you completed the opposite half of the zipper.

That's sort of how it is with DNA replication. Once the parent DNA has been split into a replication fork, a daughter strand has to be built onto the parent strand one nucleotide at a time. The 'hands' that work to grab those little nucleotides and arrange them into their spaces are actually a special type of enzyme. The enzyme is called DNA polymerase.

A daughter strand is built onto the parent strand one nucleotide at a time
One Nucleotide at a Time

DNA Polymerase

DNA polymerase sounds like a really long word, but if you break it down it actually makes a lot of sense and it's easy to remember. The suffix -ase simply tells you that this molecule is an enzyme, or a protein that helps with chemical reactions. The word root 'polymer' refers to any large molecule that is made of many smaller parts, or monomers. And you already know that DNA stands for deoxyribonucleic acid. So if you add up all of the parts of the word, then you can see that DNA polymerase is an enzyme that helps put together the small parts of the DNA molecule. Those small parts, of course, are the nucleotides.

DNA polymerase is like a vehicle that buses in the individual nucleotides. It builds the daughter strand of DNA according to the template set up by the parental strand. For every cytosine, it lays down a guanine, and for every guanine, it lays down a cytosine. For every thymine, it lays down an adenine, and for every adenine, it lays down a thymine. Each daughter nucleotide is attached, one at a time, by DNA polymerase.

Now, most enzymes, especially DNA polymerase, are a bit picky when it comes to doing their job. They want all the conditions to be just right, and they'll only help with a chemical reaction when they have everything go their way. The job of DNA polymerase is to add daughter nucleotides onto the exposed bases of a parent strand.

But since it's so picky, it won't just start adding nucleotides on its own. It has to attach them onto the end of a newly synthesized daughter strand. Now how is that supposed to work? It's sort of like if I said 'I'm not going to go grocery shopping until somebody buys me some groceries first.' DNA polymerase basically refuses to do its job until part of its job is already done!

RNA Primase and the RNA Primer

Wouldn't it be nice if we had another helper to solve this problem? Well, fortunately, we do, and it's yet another enzyme. It's called RNA primase. The job of RNA primase is to make, or synthesize, a primer for replication to start. First it waits for DNA helicase to open a replication fork. Then it swings in behind helicase to lay down a primer.

RNA primase follows DNA helicase and lays down a primer to prepare for replication
RNA Primase

What's a primer? Well, a primer is a short polynucleotide segment that primes, or prepares, the way for DNA replication by helping DNA polymerase to get started in doing its job. The primer is made out of RNA, so it's called an RNA primer.

Let's go through that again because it gets a little confusing here. The RNA primer is a short strand of RNA that initiates DNA replication. So the primer that initiates DNA replication isn't even made out of DNA! Don't get confused about the difference between the RNA primer and the RNA primase. Again, the enzyme that puts together the RNA primer is called RNA primase. Just remember that the one with -ase is the one that's the enzyme.

Just like DNA polymerase buses in the DNA nucleotides, RNA primase buses in the RNA nucleotides in order to build the RNA primer. It builds up a segment of RNA according to the template, just like before. For every cytosine, it lays down a guanine, and for every guanine, it lays down a cytosine. For every thymine, it lays down an adenine, and for every adenine, it lays down a? no, it doesn't lay down a thymine! Here's one spot where things are a bit different. Remember, this is RNA we're talking about. There is no thymine in RNA. Instead, it lays down a uracil.

Unlock Content Over 8,500 lessons in all major subjects

Get FREE access for 5 days,
just create an account.

Start a FREE trial

No obligation, cancel anytime.

Want to learn more?

Select a subject to preview related courses:

People are saying…

"This just saved me about $2,000 and 1 year of my life." — Student

"I learned in 20 minutes what it took 3 months to learn in class." — Student

See more testimonials

Did you like this?
Yes No

Thanks for your feedback!

What didn't you like?

What didn't you like?

Next Video
Create your Account

Sign up now for your account. Get unlimited access to 8,500 lessons in math, English, science, history, and more.

Meet Our Instructors

Meet all 53 of our instructors