Copyright
Like?

Partial Fractions: How to Factorize Fractions with Quadratic Denominators

Start Your Free Trial To Continue Watching
As a member, you'll also get unlimited access to over 8,500 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.
Free 5-day trial
It only takes a minute. You can cancel at any time.
Already registered? Login here for access.
Start your free trial to take this quiz
As a premium member, you can take this quiz and also access over 8,500 fun and engaging lessons in math, English, science, history, and more. Get access today with a FREE trial!
Free 5-day trial
It only takes a minute to get started. You can cancel at any time.
Already registered? Login here for access.
  1. 0:10 Example of a Complicated Fraction
  2. 1:40 Solving for Partial Fractions
  3. 7:36 Solving for Partial Fractions…
  4. 11:50 Lesson Summary
Show Timeline
Taught by

Erin Lennon

Erin has taught math and science from grade school up to the post-graduate level. She holds a Ph.D. in Chemical Engineering.

Adding fractions with different denominators is something you probably learned how to do in algebra. In this lesson, learn how to do the opposite: take a complicated fraction and turn it into two simpler ones.

Example of a Complicated Fraction

Let's think about algebra for a minute. Let's say you're trying to add two fractions, like 1/(x+2) + 3/(x-1). You'd do this by multiplying the first term by (x-1)/(x-1) and the second term by (x+2)/(x+2). When you do that, you get x^2 + x-2 on the bottom, and you can just add up the two terms on the top so you get 4x+5. If I try to integrate these like in integral calculus, the two terms on the left-hand side look a lot more reasonable (the integral of 1/(x+2)dx=ln(x+2)+C) than the gigantic term on the right-hand side. In fact, if you gave me (4x+5)/(x^2 + x-2) and told me to integrate it, I'd probably look at you like you were nuts. And then I'd try substitution or I don't even know what else before giving it back to you and saying, 'Do it yourself.' Because the left-hand side is the same thing as the right-hand side, wouldn't it be nice if we could take this big, ugly, gigantic fraction and turn it into two smaller fractions that are easier to handle?

In this problem A and B are undetermined coefficients
Partial Fraction Undetermined Coefficients

Solving for Partial Fractions

This is what we call solving for partial fractions. So what I need to do is take my big, nasty fraction with a quadratic polynomial on the bottom and something less than quadratic on the top, and I'm going to factor the quadratic part. I've got x^2 + x-2. If I factor it out into two separate terms, I find that (x+2)(x-1) is the same thing as x^2 + x-2, so I can factor this quadratic as (x+2)(x-1). Once I've factored the bottom, I know that I can rewrite this entire equation as being equal to A/(x+2) + B/(x-1), because if I multiply the first term by (x-1)/(x-1) and the second term by (x+2)/(x+2), I get back something that looks like (4x+5)/(x+2)(x-1).

A and B are what we call undetermined coefficients. How do we find these 'undetermined' coefficients and make them 'determined'? Let's take a good look at our equation. We have (4x+5)/(x+2)(x-1) = A/(x+2) + B/(x-1). Like I said, if I want to combine these two fractions into one, I need to take the first fraction and multiply it by (x-1)/(x-1) and take the second fraction and multiply it by (x+2)/(x+2). When I do that on the right side, I get A(x-1)+B(x+2)/(x+2)(x-1). Because the bottoms of these equations are now the same, I can cancel them out. I can just multiply both sides of the equation by (x+2)(x-1), and I get 4x+5=A(x-1)+B(x+2). Now I'm going to gather the like terms. So in this case, I'm going to take every part of this right-hand side that has an x in it and collect them all together. So I get Ax-A+Bx+2B, and if I collect the two terms with x in them and factor out the x, I get 4x+5=x(A+B)+(2B-A).

With undetermined coefficients, the left-hand side must equal the right side for all x values
Partial Fractions Example 1

One of the most important things to realize about solving this partial fractions problem for these undetermined coefficients is that for the left-hand side to equal the right-hand side for all values of x - remember, we don't know what A and B are - the term with the x on the left-hand side has to equal the term with the x on the right-hand side. That is, 4x has to equal x(A+B). That means A+B=4. Similarly, the term without the x on the left-hand side has to equal the term without the x on the right-hand side. So I can write another equation that is 5=2B-A. So now I have two equations and two unknowns - A and B are still my undetermined coefficients. You can solve these two equations for A and B using whatever method you prefer. I like substitution, so what I would do is say A=4 - B, and I would plug 4 - B into my second equation, 5=2B - 4 - B, just to get rid of the A. If I solve that for B, I get B=3. Then I can plug B into either one of these equations and solve for A, A=4 - 3, and I get A=1.

So I have A=1 and B=3, I can plug those into my original fractions and I get (4x+5)/(x+2)(x-1) = 1/(x+2) + 3/(x-1). Because I'm unsure of myself, I want to simplify the right-hand side and make it one fraction to make sure it equals the original fraction on the left-hand side. I'm going to multiply the first term by (x-1)/(x-1) and multiply the second term by (x+2)/(x+2). On the top of the fraction I get (x-1)+(3x+6), which simplifies to (4x+5)/(x+2)(x-1). That matches up with what was on the left-hand side. So indeed, I can rewrite this complicated equation as the sum of two much easier equations.

The process of solving the final example problem
Partial Fraction Example 2

Unlock Content Over 8,500 lessons in all major subjects

Get FREE access for 5 days,
just create an account.

Start a FREE trial

No obligation, cancel anytime.

Want to learn more?

Select a subject to preview related courses:

People are saying…

"This just saved me about $2,000 and 1 year of my life." — Student

"I learned in 20 minutes what it took 3 months to learn in class." — Student

See more testimonials

Did you like this?
Yes No

Thanks for your feedback!

What didn't you like?

What didn't you like?

Next Video
Create your Account

Sign up now for your account. Get unlimited access to 8,500 lessons in math, English, science, history, and more.

Meet Our Instructors

Meet all 53 of our instructors