Like?

Squeeze Theorem: Definition and Examples

Start Your Free Trial To Continue Watching
As a member, you'll also get unlimited access to over 8,500 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.
Free 5-day trial
It only takes a minute. You can cancel at any time.
Already registered? Login here for access.
Start your free trial to take this quiz
As a premium member, you can take this quiz and also access over 8,500 fun and engaging lessons in math, English, science, history, and more. Get access today with a FREE trial!
Free 5-day trial
It only takes a minute to get started. You can cancel at any time.
Already registered? Login here for access.
  1. 0:06 Intro to the Squeeze Theorem
  2. 1:22 Understanding the Squeeze Theorem
  3. 2:56 Squeeze Theorem in Practice
  4. 5:04 Lesson Summary
Show Timeline
Taught by

Erin Lennon

Erin has taught math and science from grade school up to the post-graduate level. She holds a Ph.D. in Chemical Engineering.

In the Kingdom of Rimonn there are three rivers. In this lesson, learn how these waterways demonstrate the power of the squeeze theorem for finding the limits of functions.

Introduction to the Squeeze Theorem

Depiction of the three primary rivers and the village of Moe
Moe and Rivers

Welcome to the Kingdom of Rimonn! Now in the Kingdom of Rimonn, we have three primary rivers. We have the River Euler. We have the River Newton. And we have the River Tiny. We don't exactly know where Tiny goes, but we know he starts out in the hills and he ends in the sea. We know a few things about the rivers in the Kingdom of Rimonn. We know that Euler is always north of the River Newton. We know that Tiny is always north of Newton, but south of Euler. So we know that Tiny basically is always between Newton and Euler, we just don't know exactly where he goes.

We also know that Euler and Newton meet up. They get very close in a village called Moe. So because Tiny is surrounded by Newton and Euler throughout the entire length of the river, we know that Tiny also has to meet up in the town of Moe. Because we know that Tiny doesn't cross Euler or Newton, and since they meet up at Moe, Tiny must also meet up at Moe.

Understanding the Squeeze Theorem

Understanding the squeeze theorem
Understanding the Squeeze Theorem Equations

This principle is known as the squeeze theorem in calculus. Some people call it the sandwich theorem, but I like the term squeeze.

Now let's consider the village of Moe, and let's zoom in really close where Euler and Newton meet up. I can say that the limit, as we approach Moe, of Euler is this point here. Let's call it the town square. And the limit, as we approach Moe, of Newton is also the town square. Because Euler is always north of Tiny and Tiny is always north of Newton, I can write that the limit, as we approach Moe, of Tiny is also the town square.

So let's make this really formal. If the function g(x) is less than or equal to f(x), which is less than or equal to h(x), and the limit, as we approach some number, of g(x) equals the limit, as we approach that same number, of h(x), then we've squeezed f(x) such that the limit, as we approach the same number, of f(x) is equal to both the limit of both g and h. In this case, h is like Euler, g is like Newton and f is like Tiny, and f is squeezed in here. So the limit as we approach Moe is that town square.

Use the product property to divide the limit into two limits
Squeeze Theorem Product Property

Squeeze Theorem in Practice

The best example of the squeeze theorem in practice is looking at the limit as x gets really big of sin(x)/x. I know from the properties of limits that I can write this as the limit, as x goes to infinity, of sin(x) divided by the limit, as x goes to infinity, of x, as long as x exists as this gets really, really big. But I can also write this as the limit, as x goes to infinity, of sin(x) * 1/x. I can use multiplication, the product property, to divide this into two limits.

Now to use the squeeze theorem, we need to look at what possible functions might surround this sin(x)/x. What will always be bigger and what will always be smaller? Well, sin(x) is always going to be between -1 and 1. So perhaps I can write that sin(x)/x will always be greater than or equal to -1/x. And sin(x) will always be less than or equal to 1/x. So maybe we can use -1/x and 1/x to squeeze sin(x)/x. So what happens to -1/x and 1/x as x gets really big? Well, as x gets really big, -1/x gets really close to zero. So the limit, as x gets really big, of -1/x is 0. Similarly, if we look at 1/x, the limit, as x goes to infinity, of 1/x is also zero. What we have here is that as we get very large, sin(x)/x is surrounded by things that are going to zero. So the limit, as x gets really large, of sin(x)/x must be zero.

In this example, use -1/x and 1/x to squeeze sin(x)/x
Squeeze Theorem Example

Lesson Summary

So to recap, when you're thinking about the squeeze theorem, think of the kingdom of Rimonn, and think about what has to happen to the rivers of Newton, Euler and Tiny as we approach the village of Moe. Because Euler and Newton are going through the town square of Moe, Tiny must also. This is the same thing as saying if g(x) is less than or equal to f(x), which is less than or equal to h(x), and the limit, as we approach some number, of g(x) equals the limit, as we approach that number, of h(x), then f(x) must also approach that number.

People are saying…

"This just saved me about $2,000 and 1 year of my life." — Student

"I learned in 20 minutes what it took 3 months to learn in class." — Student

See more testimonials

Did you like this?
Yes No

Thanks for your feedback!

What didn't you like?

What didn't you like?

Next Video
Create your Account

Sign up now for your account. Get unlimited access to 8,500 lessons in math, English, science, history, and more.

Meet Our Instructors

Meet all 53 of our instructors

Copyright